Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cell Mol Gastroenterol Hepatol ; 16(5): 757-782, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37482243

RESUMO

BACKGROUND & AIMS: Brain metastases (BMs) from colorectal cancer (CRC) are associated with significant morbidity and mortality, with chemoresistance and short overall survival. Migrating cancer stem cells with the ability to initiate BM have been described in breast and lung cancers. In this study, we describe the identification and characterization of cancer stem cells in BM from CRC. METHODS: Four brain metastasis stem cell lines from patients with colorectal cancer (BM-SC-CRC1 to BM-SC-CRC4) were obtained by mechanical dissociation of patient's tumors and selection of cancer stem cells by appropriate culture conditions. BM-SC-CRCs were characterized in vitro by clonogenic and limiting-dilution assays, as well as immunofluorescence and Western blot analyses. In ovo, a chicken chorioallantoic membrane (CAM) model and in vivo, xenograft experiments using BALB/c-nude mice were realized. Finally, a whole exome and RNA sequencing analyses were performed. RESULTS: BM-SC-CRC formed metaspheres and contained tumor-initiating cells with self-renewal properties. They expressed stem cell surface markers (CD44v6, CD44, and EpCAM) in serum-free medium and CRC markers (CK19, CK20 and CDX-2) in fetal bovine serum-enriched medium. The CAM model demonstrated their invasive and migratory capabilities. Moreover, mice intracranial xenotransplantation of BM-SC-CRCs adequately recapitulated the original patient BM phenotype. Finally, transcriptomic and genomic approaches showed a significant enrichment of invasiveness and specific stemness signatures and highlighted KMT2C as a potential candidate gene to potentially identify high-risk CRC patients. CONCLUSIONS: This original study represents the first step in CRC BM initiation and progression comprehension, and further investigation could open the way to new therapeutics avenues to improve patient prognosis.


Assuntos
Neoplasias Encefálicas , Neoplasias Colorretais , Humanos , Camundongos , Animais , Neoplasias Colorretais/patologia , Camundongos Nus , Células-Tronco Neoplásicas/metabolismo , Xenoenxertos , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia
2.
Lab Invest ; 103(5): 100053, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36801645

RESUMO

Gliomas are the most common and lethal primary brain tumors in adults. Glioblastomas, the most frequent and aggressive form of gliomas, represent a therapeutic challenge as no curative treatment exists to date, and the prognosis remains extremely poor. Recently, the transcriptional cofactors Yes-associated protein (YAP) and transcriptional co-activator with PDZ-binding motif (TAZ) belonging to the Hippo pathway have emerged as a major determinant of malignancy in solid tumors, including gliomas. However, the mechanisms involved in its regulation, particularly in brain tumors, remain ill-defined. In glioblastomas, EGFR represents one of the most altered oncogenes affected by chromosomal rearrangements, mutations, amplifications, and overexpression. In this study, we investigated the potential link between epidermal growth factor receptor (EGFR) and the transcriptional cofactors YAP and TAZ by in situ and in vitro approaches. We first studied their activation on tissue microarray, including 137 patients from different glioma molecular subtypes. We observed that YAP and TAZ nuclear location was highly associated with isocitrate dehydrogenase 1/2 (IDH1/2) wild-type glioblastomas and poor patient outcomes. Interestingly, we found an association between EGFR activation and YAP nuclear location in glioblastoma clinical samples, suggesting a link between these 2 markers contrary to its ortholog TAZ. We tested this hypothesis in patient-derived glioblastoma cultures by pharmacologic inhibition of EGFR using gefinitib. We showed an increase of S397-YAP phosphorylation associated with decreased AKT phosphorylation after EGFR inhibition in phosphatase and tensin homolog (PTEN) wild-type cultures, unlike PTEN-mutated cell lines. Finally, we used bpV(HOpic), a potent PTEN inhibitor, to mimic the effect of PTEN mutations. We found that the inhibition of PTEN was sufficient to revert back the effect induced by Gefitinib in PTEN-wild-type cultures. Altogether, to our knowledge, these results show for the first time the regulation of pS397-YAP by the EGFR-AKT axis in a PTEN-dependent manner.


Assuntos
Glioblastoma , Adulto , Humanos , Glioblastoma/genética , Proteínas de Sinalização YAP , Proteínas Proto-Oncogênicas c-akt/metabolismo , Tensinas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Receptores ErbB/metabolismo
3.
Int J Mol Sci ; 23(9)2022 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-35563134

RESUMO

Glioblastomas represent approximatively half of all gliomas and are the most deadly and aggressive form. Their therapeutic resistance and tumor relapse rely on a subpopulation of cells that are called Glioma Stem Cells (GSCs). Here, we investigated the role of the long non-coding RNA HOXA-AS2 in GSC biology using descriptive and functional analyses of glioma samples classified according to their isocitrate dehydrogenase (IDH) gene mutation status, and of GSC lines. We found that HOXA-AS2 is overexpressed only in aggressive (IDHwt) glioma and GSC lines. ShRNA-based depletion of HOXA-AS2 in GSCs decreased cell proliferation and altered the expression of several hundreds of genes. Integrative analysis revealed that these expression changes were not associated with changes in DNA methylation or chromatin signatures at the promoter of the majority of genes deregulated following HOXA-AS2 silencing in GSCs, suggesting a post-transcriptional regulation. In addition, transcription factor binding motif enrichment and correlation analyses indicated that HOXA-AS2 affects, directly or indirectly, the expression of key transcription factors implicated in GCS biology, including E2F8, E2F1, STAT1, and ATF3, thus contributing to GCS aggressiveness by promoting their proliferation and modulating the inflammation pathway.


Assuntos
Glioma , RNA Longo não Codificante , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Glioma/genética , Glioma/patologia , Humanos , Inflamação/genética , Células-Tronco Neoplásicas/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
4.
Hum Mol Genet ; 31(15): 2606-2622, 2022 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-35298627

RESUMO

Besides the consequences of retrotransposition, long interspersed element 1 (L1) retrotransposons can affect the host genome through their antisense promoter. In addition to the sense promoter, the evolutionarily recent L1 retrotransposons, which are present in several thousand copies, also possess an anti-sense promoter that can produce L1 chimeric transcripts (LCT) composed of the L1 5' UTR followed by the adjacent genomic sequence. The full extent to which LCT expression occurs in a given tissue and whether disruption of the defense mechanisms that normally control L1 retrotransposons affects their expression and function in cancer cells, remain to be established. By using CLIFinder, a dedicated bioinformatics tool, we found that LCT expression was widespread in normal brain and aggressive glioma samples, and that approximately 17% of recent L1 retrotransposons, from the L1PA1 to L1PA7 subfamilies, were involved in their production. Importantly, the transcriptional activities of the L1 antisense promoters and of their host loci were coupled. Accordingly, we detected LCT-producing L1 retrotransposons mainly in transcriptionally active genes and genomic loci. Moreover, changes in the host genomic locus expression level in glioma were associated with a similar change in LCT expression level, regardless of the L1 promoter methylation status. Our findings support a model in which the host genomic locus transcriptional activity is the main driving force of LCT expression. We hypothesize that this model is more applicable when host gene and LCT are transcribed from the same strand.


Assuntos
Glioma , Retroelementos , Encéfalo , Glioma/genética , Humanos , Elementos Nucleotídeos Longos e Dispersos/genética , Regiões Promotoras Genéticas/genética , Retroelementos/genética
5.
Cancers (Basel) ; 13(23)2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34885053

RESUMO

The high expression of MEOX2 transcription factor is closely associated with poor overall survival in glioma. MEOX2 has recently been described as an interesting prognostic biomarker, especially for lower grade glioma. MEOX2 has never been studied in glioma stem-like cells (GSC), responsible for glioma recurrence. The aim of our study was to investigate the role of MEOX2 in GSC. Loss of function approach using siRNA was used to assess the impact of MEOX2 on GSC viability and stemness phenotype. MEOX2 was localized in the nucleus and its expression was heterogeneous between GSCs. MEOX2 expression depends on the methylation state of its promoter and is strongly associated with IDH mutations. MEOX2 is involved in cell proliferation and viability regulation through ERK/MAPK and PI3K/AKT pathways. MEOX2 loss of function correlated with GSC differentiation and acquisition of neuronal lineage characteristics. Besides, inhibition of MEOX2 is correlated with increased expression of CDH10 and decreased pFAK. In this study, we unraveled, for the first time, MEOX2 contribution to cell viability and proliferation through AKT/ERK pathway and its potential involvement in phenotype and adhesion properties of GSC.

6.
Front Cell Dev Biol ; 9: 652544, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33937253

RESUMO

Glioblastomas (GBMs) are the most common primary brain tumors characterized by strong invasiveness and angiogenesis. GBM cells and microenvironment secrete angiogenic factors and also express chemoattractant G protein-coupled receptors (GPCRs) to their advantage. We investigated the role of the vasoactive peptide urotensin II (UII) and its receptor UT on GBM angiogenesis and tested potential ligand/therapeutic options based on this system. On glioma patient samples, the expression of UII and UT increased with the grade with marked expression in the vascular and peri-necrotic mesenchymal hypoxic areas being correlated with vascular density. In vitro human UII stimulated human endothelial HUV-EC-C and hCMEC/D3 cell motility and tubulogenesis. In mouse-transplanted Matrigel sponges, mouse (mUII) and human UII markedly stimulated invasion by macrophages, endothelial, and smooth muscle cells. In U87 GBM xenografts expressing UII and UT in the glial and vascular compartments, UII accelerated tumor development, favored hypoxia and necrosis associated with increased proliferation (Ki67), and induced metalloproteinase (MMP)-2 and -9 expression in Nude mice. UII also promoted a "tortuous" vascular collagen-IV expressing network and integrin expression mainly in the vascular compartment. GBM angiogenesis and integrin αvß3 were confirmed by in vivo 99mTc-RGD tracer imaging and tumoral capture in the non-necrotic area of U87 xenografts in Nude mice. Peptide analogs of UII and UT antagonist were also tested as potential tumor repressor. Urotensin II-related peptide URP inhibited angiogenesis in vitro and failed to attract vascular and inflammatory components in Matrigel in vivo. Interestingly, the UT antagonist/biased ligand urantide and the non-peptide UT antagonist palosuran prevented UII-induced tubulogenesis in vitro and significantly delayed tumor growth in vivo. Urantide drastically prevented endogenous and UII-induced GBM angiogenesis, MMP, and integrin activations, associated with GBM tumoral growth. These findings show that UII induces GBM aggressiveness with necrosis and angiogenesis through integrin activation, a mesenchymal behavior that can be targeted by UT biased ligands/antagonists.

7.
Mol Oncol ; 15(8): 1995-2010, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33720519

RESUMO

In human, the 39 coding HOX genes and 18 referenced noncoding antisense transcripts are arranged in four genomic clusters named HOXA, B, C, and D. This highly conserved family belongs to the homeobox class of genes that encode transcription factors required for normal development. Therefore, HOX gene deregulation might contribute to the development of many cancer types. Here, we study HOX gene deregulation in adult glioma, a common type of primary brain tumor. We performed extensive molecular analysis of tumor samples, classified according to their isocitrate dehydrogenase (IDH1) gene mutation status, and of glioma stem cells. We found widespread expression of sense and antisense HOX transcripts only in aggressive (IDHwt) glioma samples, although the four HOX clusters displayed DNA hypermethylation. Integrative analysis of expression, DNA methylation, and histone modification signatures along the clusters revealed that HOX gene upregulation relies on canonical and alternative bivalent CpG island promoters that escape hypermethylation. H3K27me3 loss at these promoters emerges as the main cause of widespread HOX gene upregulation in IDHwt glioma cell lines and tumors. Our study provides the first comprehensive description of the epigenetic changes at HOX clusters and their contribution to the transcriptional changes observed in adult glioma. It also identified putative 'master' HOX proteins that might contribute to the tumorigenic potential of glioma stem cells.


Assuntos
Neoplasias Encefálicas/genética , Metilação de DNA , Genes Homeobox , Glioma/genética , Histonas/genética , Regiões Promotoras Genéticas , Neoplasias Encefálicas/enzimologia , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Glioma/enzimologia , Glioma/patologia , Humanos , Isocitrato Desidrogenase/genética , Transcrição Gênica
8.
Cells ; 10(1)2021 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-33477668

RESUMO

The Hippo signaling pathway is a highly conserved pathway involved in tissue development and regeneration that controls organ size through the regulation of cell proliferation and apoptosis. The core Hippo pathway is composed of a block of kinases, MST1/2 (Mammalian STE20-like protein kinase 1/2) and LATS1/2 (Large tumor suppressor 1/2), which inhibits nuclear translocation of YAP/TAZ (Yes-Associated Protein 1/Transcriptional co-activator with PDZ-binding motif) and its downstream association with the TEAD (TEA domain) family of transcription factors. This pathway was recently shown to be involved in tumorigenesis and metastasis in several cancers such as lung, breast, or colorectal cancers but is still poorly investigated in brain tumors. Gliomas are the most common and the most lethal primary brain tumors representing about 80% of malignant central nervous system neoplasms. Despite intensive clinical protocol, the prognosis for patients remains very poor due to systematic relapse and treatment failure. Growing evidence demonstrating the role of Hippo signaling in cancer biology and the lack of efficient treatments for malignant gliomas support the idea that this pathway could represent a potential target paving the way for alternative therapeutics. Based on recent advances in the Hippo pathway deciphering, the main goal of this review is to highlight the role of this pathway in gliomas by a state-of-the-art synthesis.


Assuntos
Neoplasias Encefálicas/metabolismo , Glioma/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Animais , Neoplasias Encefálicas/patologia , Glioma/patologia , Glioma/terapia , Via de Sinalização Hippo , Humanos
9.
Mod Pathol ; 32(6): 774-786, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30659268

RESUMO

Gliomas are the most common malignant primary tumors in the central nervous system and have variable predictive clinical courses. Glioblastoma, the most aggressive form of glioma, is a complex disease with unsatisfactory therapeutic solutions and a very poor prognosis. Some processes at stake in gliomagenesis have been discovered but little is known about the role of homeobox genes, even though they are highly expressed in gliomas, particularly in glioblastoma. Among them, the transcription factor Mesenchyme Homeobox 2 (MEOX2) had previously been associated with malignant progression and clinical prognosis in lung cancer and hepatocarcinoma but never studied in glioma. The aim of our study was to investigate the clinical significance of MEOX2 in gliomas. We assessed the expression of MEOX2 according to IDH1/2 molecular profile and patient survival among three different public datasets: The Cancer Genome Atlas (TCGA), The Chinese Glioma Genome Atlas (CGGA) and the US National Cancer Institute Repository for Molecular Brain Neoplasia Data (Rembrandt). We then evaluated the prognostic significance of MEOX2 protein expression on 112 glioma clinical samples including; 56 IDH1 wildtype glioblastomas, 7 IDH1 wild-type lower grade gliomas, 49 IDH1 mutated lower grade gliomas. Survival rates were estimated by the Kaplan-Meier method followed by uni/multivariate analyses. We demonstrated that MEOX2 was one of the transcription factors most closely associated with overall survival in glioma. Moreover, MEOX2 expression was associated with IDH1/2 wildtype molecular subtype and was significantly correlated with overall survival of all gliomas and, more interestingly, in lower grade glioma. To conclude, our results may be the first to provide insight into the clinical significance of MEOX2 in gliomas, which is a factor closely related to patient outcome. MEOX2 could constitute an interesting prognostic biomarker, especially for lower grade glioma.


Assuntos
Biomarcadores Tumorais/análise , Neoplasias Encefálicas/patologia , Glioma/patologia , Proteínas de Homeodomínio/biossíntese , Adulto , Idoso , Idoso de 80 Anos ou mais , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/mortalidade , Feminino , Glioma/metabolismo , Glioma/mortalidade , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico , Adulto Jovem
10.
Int J Mol Sci ; 19(10)2018 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-30282933

RESUMO

"Glioma Stem Cells" (GSCs) are known to play a role in glioblastoma (GBM) recurrence. Homologous recombination (HR) defects and cell cycle checkpoint abnormalities can contribute concurrently to the radioresistance of GSCs. DNA repair protein RAD51 homolog 1 (RAD51) is a crucial protein for HR and its inhibition has been shown to sensitize GSCs to irradiation. The aim of this study was to examine the consequences of ionizing radiation (IR) for cell cycle progression in GSCs. In addition, we intended to assess the potential effect of RAD51 inhibition on cell cycle progression. Five radiosensitive GSC lines and five GSC lines that were previously characterized as radioresistant were exposed to 4Gy IR, and cell cycle analysis was done by fluorescence-activated cell sorting (FACS) at 24, 48, 72, and 96 h with or without RAD51 inhibitor. Following 4Gy IR, all GSC lines presented a significant increase in G2 phase at 24 h, which was maintained over 72 h. In the presence of RAD51 inhibitor, radioresistant GSCs showed delayed G2 arrest post-irradiation for up to 48 h. This study demonstrates that all GSCs can promote G2 arrest in response to radiation-induced DNA damage. However, following RAD51 inhibition, the cell cycle checkpoint response differed. This study contributes to the characterization of the radioresistance mechanisms of GSCs, thereby supporting the rationale of targeting RAD51-dependent repair pathways in view of radiosensitizing GSCs.


Assuntos
Ciclo Celular/genética , Ciclo Celular/efeitos da radiação , Glioblastoma/genética , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/efeitos da radiação , Rad51 Recombinase/genética , Radiação Ionizante , Linhagem Celular Tumoral , Reparo do DNA , Regulação Neoplásica da Expressão Gênica , Glioblastoma/metabolismo , Glioblastoma/patologia , Humanos , Rad51 Recombinase/metabolismo , Tolerância a Radiação/genética
11.
J Pathol ; 246(2): 205-216, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30009411

RESUMO

During the last decade, large-scale genomic analyses have clarified the somatic alterations in gliomas, providing new molecular classification based on IDH1/2 mutations and 1p19q codeletion with more accurate patient prognostication. The Hippo pathway downstream effectors, YAP1 and TAZ, have recently emerged as major determinants of malignancy by inducing proliferation, chemoresistance, and metastasis in solid tumors. In this study, we investigated the expression of YAP1 in 117 clinical samples of glioma described according to the WHO 2016 classification. We showed for the first time that YAP1 was tightly associated with glioma molecular subtypes and patient outcome. We validated our results in an independent cohort from the TCGA database. More interestingly, we found that YAP1 may have prognostic significance for predicting patient survival, especially in low-grade gliomas. Using patient-derived glioblastoma stem cell cultures, we demonstrated that YAP1 was activated and that it controlled cell proliferation. Transcriptome analysis revealed lower expression of YAP1 in the proneural GBM subtype. Furthermore, we found that overexpression of YAP1 was sufficient to inhibit the OLIG2 proneural marker, suggesting its involvement in maintenance of the GBM phenotype. Taken together, our results showed that YAP1 could be a relevant prognostic biomarker and a potential therapeutic target in glioma. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Biomarcadores Tumorais/metabolismo , Neoplasias Encefálicas/metabolismo , Proliferação de Células , Glioma/metabolismo , Células-Tronco Neoplásicas/metabolismo , Fosfoproteínas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Biomarcadores Tumorais/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/mortalidade , Neoplasias Encefálicas/patologia , Feminino , Regulação Neoplásica da Expressão Gênica , Glioma/genética , Glioma/mortalidade , Glioma/patologia , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Células-Tronco Neoplásicas/patologia , Fator de Transcrição 2 de Oligodendrócitos/genética , Fator de Transcrição 2 de Oligodendrócitos/metabolismo , Fenótipo , Fosfoproteínas/genética , Intervalo Livre de Progressão , Transdução de Sinais , Fatores de Tempo , Fatores de Transcrição , Células Tumorais Cultivadas , Proteínas de Sinalização YAP , Adulto Jovem
12.
Oncotarget ; 9(29): 20640-20657, 2018 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-29755678

RESUMO

Glioblastoma (GBM) represents the most common and lethal brain tumor. High vascularization, necrosis and invasiveness are hallmarks of GBM aggressiveness with recent data suggesting the important role of glioblastoma stem cells (GSCs) in these processes. It is now well established that cancer cells employ specialized structures termed invadosomes to potentiate invasion. However, the role of these structures in GBM dissemination remains poorly investigated. In this study, we showed that GBM-isolated GSCs form invadopodia-like protrusions endowed with degradative action. Interestingly, their formation depends on extracellular matrix (ECM) sensing via the CD44 receptor. We also found that GSCs invasive migration occurring during tubes assembly is promoted through invadopodia-mediated-ECM remodeling and LIM kinases signaling. Moreover, our study demonstrates that GSCs are highly adaptable cells that are able not only to restore damaged endothelial-derived tubes but also to generate in cooperation with normal endothelial cells (ECs) intact vascular channels. Taken together, our data provide new insights in GBM microvasculature and suggest that GSCs targeting in combination with anti-VEGF therapy may block tumor progression.

13.
Oncotarget ; 9(3): 3968-3979, 2018 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-29423098

RESUMO

Glioblastoma (GBM) represents the most common and lethal primary malignant brain tumor. The standard treatment for glioblastoma patients involves surgical resection with concomitant radio and chemotherapy. Despite today's clinical protocol, the prognosis for patients remains very poor with a median survival of 15 months. Tumor resistance and recurrence is strongly correlated with a subpopulation of highly radioresistant and invasive cells termed Glioblastoma Stem Cells (GSCs). The transcription factor STAT3 has been found to be constitutively activated in different tumors including GBM and enhanced tumor radioresistance. In this study, we assessed radiosensitization of GSC lines isolated from patients by inhibition of STAT3 activation using Stattic or WP1066. We showed that inhibitor treatment before cell irradiation decreased the surviving fraction of GSCs suggesting that STAT3 inhibition could potentiate radiation effects. Finally, we investigated STAT3 activation status on 61 GBM clinical samples and found a preferential phosphorylation of STAT3 on Serine727 (pS727). Moreover, we found that pS727 was associated with a significant lower overall patient survival and progression-free survival but not pY705. Taken together, our results suggest that pS727-STAT3 could be a potential prognostic marker and could constitute a therapeutic target to sensitize highly radioresistant GSCs.

14.
Mol Neurobiol ; 55(4): 2763-2779, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28455691

RESUMO

Subarachnoid hemorrhage (SAH) is a devastating disease with high mortality and morbidity. Long-term cognitive and sensorimotor deficits are serious complications following SAH but still not well explained and described in mouse preclinical models. The aim of our study is to characterize a well-mastered SAH murine model and to establish developing pathological mechanisms leading to cognitive and motor deficits, allowing identification of specific targets involved in these long-term troubles. We hereby demonstrate that the double blood injection model of SAH induced long-lasting large cerebral artery vasospasm (CVS), microthrombosis formation and cerebral brain damage including defect in potential paravascular diffusion. These neurobiological alterations appear to be associated with sensorimotor and cognitive dysfunctions mainly detected 10 days after the bleeding episode. In conclusion, this characterized model of SAH in mice, stressing prolonged neurobiological pathological mechanisms and associated sensitivomotor deficits, will constitute a validated preclinical model to better decipher the link between CVS, long-term cerebral apoptosis and cognitive disorders occurring during SAH and to allow investigating novel therapeutic approaches in transgenic mice.


Assuntos
Apoptose , Encéfalo/irrigação sanguínea , Encéfalo/patologia , Hemorragia Subaracnóidea/complicações , Trombose/etiologia , Trombose/patologia , Vasoespasmo Intracraniano/etiologia , Vasoespasmo Intracraniano/patologia , Animais , Peso Corporal , Caspase 3/metabolismo , Artérias Cerebrais/patologia , Córtex Cerebral/patologia , Modelos Animais de Doenças , Injeções , Camundongos Endogâmicos C57BL , Córtex Sensório-Motor/patologia , Hemorragia Subaracnóidea/líquido cefalorraquidiano , Trombose/líquido cefalorraquidiano , Vasoespasmo Intracraniano/líquido cefalorraquidiano
15.
PLoS One ; 11(3): e0151274, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26953813

RESUMO

Asymmetric division (AD) is a fundamental mechanism whereby unequal inheritance of various cellular compounds during mitosis generates unequal fate in the two daughter cells. Unequal repartitions of transcription factors, receptors as well as mRNA have been abundantly described in AD. In contrast, the involvement of intermediate filaments in this process is still largely unknown. AD occurs in stem cells during development but was also recently observed in cancer stem cells. Here, we demonstrate the asymmetric distribution of the main astrocytic intermediate filament, namely the glial fibrillary acid protein (GFAP), in mitotic glioma multipotent cells isolated from glioblastoma (GBM), the most frequent type of brain tumor. Unequal mitotic repartition of GFAP was also observed in mice non-tumoral neural stem cells indicating that this process occurs across species and is not restricted to cancerous cells. Immunofluorescence and videomicroscopy were used to capture these rare and transient events. Considering the role of intermediate filaments in cytoplasm organization and cell signaling, we propose that asymmetric distribution of GFAP could possibly participate in the regulation of normal and cancerous neural stem cell fate.


Assuntos
Divisão Celular Assimétrica , Proteína Glial Fibrilar Ácida/metabolismo , Glioma/metabolismo , Células-Tronco Multipotentes/metabolismo , Células-Tronco Neoplásicas/metabolismo , Animais , Linhagem Celular Tumoral , Células Cultivadas , Expressão Gênica , Genes Reporter , Proteína Glial Fibrilar Ácida/genética , Humanos , Camundongos , Mitose , Células-Tronco Neurais/metabolismo , Transporte Proteico
16.
Am J Hum Genet ; 97(5): 754-60, 2015 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-26593267

RESUMO

Autosomal-recessive optic neuropathies are rare blinding conditions related to retinal ganglion cell (RGC) and optic-nerve degeneration, for which only mutations in TMEM126A and ACO2 are known. In four families with early-onset recessive optic neuropathy, we identified mutations in RTN4IP1, which encodes a mitochondrial ubiquinol oxydo-reductase. RTN4IP1 is a partner of RTN4 (also known as NOGO), and its ortholog Rad8 in C. elegans is involved in UV light response. Analysis of fibroblasts from affected individuals with a RTN4IP1 mutation showed loss of the altered protein, a deficit of mitochondrial respiratory complex I and IV activities, and increased susceptibility to UV light. Silencing of RTN4IP1 altered the number and morphogenesis of mouse RGC dendrites in vitro and the eye size, neuro-retinal development, and swimming behavior in zebrafish in vivo. Altogether, these data point to a pathophysiological mechanism responsible for RGC early degeneration and optic neuropathy and linking RTN4IP1 functions to mitochondrial physiology, response to UV light, and dendrite growth during eye maturation.


Assuntos
Proteínas de Transporte/genética , Fibroblastos/patologia , Mitocôndrias/patologia , Proteínas Mitocondriais/genética , Mutação/genética , Doenças do Nervo Óptico/genética , Doenças do Nervo Óptico/patologia , Células Ganglionares da Retina/patologia , Sequência de Aminoácidos , Animais , Proteínas de Transporte/antagonistas & inibidores , Proteínas de Transporte/metabolismo , Estudos de Casos e Controles , Células Cultivadas , Complexo I de Transporte de Elétrons , Feminino , Fibroblastos/metabolismo , Seguimentos , Genes Recessivos , Humanos , Masculino , Camundongos , Mitocôndrias/genética , Proteínas Mitocondriais/antagonistas & inibidores , Proteínas Mitocondriais/metabolismo , Dados de Sequência Molecular , Degeneração Neural , Linhagem , Prognóstico , Células Ganglionares da Retina/metabolismo , Homologia de Sequência de Aminoácidos , Peixe-Zebra/genética , Peixe-Zebra/crescimento & desenvolvimento , Peixe-Zebra/metabolismo
17.
J Neurosci Methods ; 254: 80-5, 2015 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-26213218

RESUMO

Intraluminal monofilament occlusion of the middle cerebral artery (MCAO) in mice is the most used rodent model to study the pathophysiology of stroke. However, this model often shows brain damage in regions not supplied by the MCA such as the hypothalamus, hippocampus and thalamus. Several studies have suggested some explanations on these localized infarcts. We aim to provide an alternative explanation which could allow each experimenter to better grasp the MCAO model. We propose that the MCA occlusion by the monofilament also occludes deep and small cerebral arteries arising directly from the internal carotid artery, proximally to the origin of MCA. Then, drawbacks and pitfalls of the MCAO model must be appreciated and the almost systematic risk of inducing lesions in some unwanted territories for neuroanatomical reasons, i.e. vascular connections between deep arteries and hypothalamic, thalamic and hippocampal areas in rodents has to be integrated.


Assuntos
Modelos Animais de Doenças , Hipocampo/patologia , Hipotálamo/patologia , Infarto da Artéria Cerebral Média/patologia , Infarto da Artéria Cerebral Média/fisiopatologia , Tálamo/patologia , Animais , Artéria Carótida Interna/patologia , Artéria Carótida Interna/fisiopatologia , Artérias Cerebrais/patologia , Artérias Cerebrais/fisiopatologia , Hipocampo/irrigação sanguínea , Hipotálamo/irrigação sanguínea , Infarto da Artéria Cerebral Média/etiologia , Tálamo/irrigação sanguínea
18.
PLoS One ; 10(4): e0122337, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25875008

RESUMO

The proliferation and differentiation of neural stem cells are tightly controlled by intrinsic and extrinsic cues. Cell adhesion molecules are increasingly recognized as regulators of these processes. Here we report the expression of the olfactory cell adhesion molecule (OCAM/NCAM2/RNCAM) during mouse spinal cord development and in neural stem cells cultured as neurospheres. OCAM is also weakly expressed in the dormant adult stem cell niche around the central canal and is overexpressed after spinal cord injury. Both transmembrane (TM) and glycosylphosphatidylinositol (GPI)-linked isoforms are present in neurospheres. Electron microscopy and internalisation experiments revealed a dynamic trafficking of OCAM between the membrane and intracellular compartments. After differentiation, OCAM remains in neurons and oligodendrocytes whereas no expression is detected in astrocytes. Using OCAM knockout (KO) mice, we found that mutant spinal cord stem cells showed an increased proliferation and self-renewal rates although no effect on differentiation was observed. This effect was reversed by lentivirus-mediated re-introduction of OCAM. Mechanistically, we identified the ErbB2/Neu/HER2 protein as being implicated in the enhanced proliferation of mutant cells. ErbB2 protein expression and phosphorylation level were significantly increased in KO cells whereas no difference was observed at the mRNA level. Overexpression of ErbB2 in wild-type and mutant cells also increased their growth while reintroduction of OCAM in mutant cells reduced the level of phosphorylated ErbB2. These results indicate that OCAM exerts a posttranscriptional control on the ErbB2 signalling in spinal cord stem cells. This study adds further support for considering cell adhesion molecules as regulators of the ErbB signalling.


Assuntos
Células-Tronco Embrionárias/metabolismo , Moléculas de Adesão de Célula Nervosa/biossíntese , Receptor ErbB-2/biossíntese , Medula Espinal/metabolismo , Animais , Adesão Celular/genética , Proliferação de Células/genética , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Camundongos Knockout , Moléculas de Adesão de Célula Nervosa/genética , RNA Mensageiro/biossíntese , Receptor ErbB-2/genética , Transdução de Sinais/genética , Medula Espinal/crescimento & desenvolvimento
19.
Hum Mol Genet ; 24(14): 3948-55, 2015 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-25901006

RESUMO

Mitochondrial complex I (CI) deficiencies are causing debilitating neurological diseases, among which, the Leber Hereditary Optic Neuropathy and Leigh Syndrome are the most frequent. Here, we describe the first germinal pathogenic mutation in the NDUFA13/GRIM19 gene encoding a CI subunit, in two sisters with early onset hypotonia, dyskinesia and sensorial deficiencies, including a severe optic neuropathy. Biochemical analysis revealed a drastic decrease in CI enzymatic activity in patient muscle biopsies, and reduction of CI-driven respiration in fibroblasts, while the activities of complex II, III and IV were hardly affected. Western blots disclosed that the abundances of NDUFA13 protein, CI holoenzyme and super complexes were drastically reduced in mitochondrial fractions, a situation that was reproduced by silencing NDUFA13 in control cells. Thus, we established here a correlation between the first mutation yet identified in the NDUFA13 gene, which induces CI instability and a severe but slowly evolving clinical presentation affecting the central nervous system.


Assuntos
Proteínas Reguladoras de Apoptose/genética , Discinesias/genética , Complexo I de Transporte de Elétrons/deficiência , Doenças Mitocondriais/genética , Hipotonia Muscular/genética , NADH NADPH Oxirredutases/genética , Proteínas Reguladoras de Apoptose/metabolismo , Criança , Pré-Escolar , Complexo I de Transporte de Elétrons/genética , Feminino , Seguimentos , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Mutação , NADH NADPH Oxirredutases/metabolismo , Fases de Leitura Aberta , Linhagem
20.
Stem Cells ; 33(1): 21-34, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24898819

RESUMO

Glioblastoma multiforms (GBMs) are highly vascularized brain tumors containing a subpopulation of multipotent cancer stem cells. These cells closely interact with endothelial cells in neurovascular niches. In this study, we have uncovered a close link between the Notch1 pathway and the tumoral vascularization process of GBM stem cells. We observed that although the Notch1 receptor was activated, the typical target proteins (HES5, HEY1, and HEY2) were not or barely expressed in two explored GBM stem cell cultures. Notch1 signaling activation by expression of the intracellular form (NICD) in these cells was found to reduce their growth rate and migration, which was accompanied by the sharp reduction in neural stem cell transcription factor expression (ASCL1, OLIG2, and SOX2), while HEY1/2, KLF9, and SNAI2 transcription factors were upregulated. Expression of OLIG2 and growth were restored after termination of Notch1 stimulation. Remarkably, NICD expression induced the expression of pericyte cell markers (NG2, PDGFRß, and α-smooth muscle actin [αSMA]) in GBM stem cells. This was paralleled with the induction of several angiogenesis-related factors most notably cytokines (heparin binding epidermal growth factor [HB-EGF], IL8, and PLGF), matrix metalloproteinases (MMP9), and adhesion proteins (vascular cell adhesion molecule 1 [VCAM1], intercellular adhesion molecule 1 [ICAM1], and integrin alpha 9 [ITGA9]). In xenotransplantation experiments, contrasting with the infiltrative and poorly vascularized tumors obtained with control GBM stem cells, Notch1 stimulation resulted in poorly disseminating but highly vascularized grafts containing large vessels with lumen. Notch1-stimulated GBM cells expressed pericyte cell markers and closely associated with endothelial cells. These results reveal an important role for the Notch1 pathway in regulating GBM stem cell plasticity and angiogenic properties.


Assuntos
Neoplasias Encefálicas/irrigação sanguínea , Glioblastoma/irrigação sanguínea , Células-Tronco Neoplásicas/patologia , Pericitos/patologia , Receptor Notch1/metabolismo , Animais , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Diferenciação Celular , Linhagem Celular Tumoral , Glioblastoma/metabolismo , Glioblastoma/patologia , Xenoenxertos , Humanos , Camundongos , Camundongos Nus , Células-Tronco Neoplásicas/metabolismo , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , Pericitos/metabolismo , Transdução de Sinais , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA